AIS Complex Analysis (2008)
Venue: | Pune Univ. & BIM |
Dates: | 5 June-2 July |
Convener(s) | Speakers, Syllabus and Time table | Applicants/Participants |
Name | S. A. Katre | D. Thakur |
Mailing Address |
University of Pune |
University of Arizona |
Advanced Instructional School on Complex Analysis (AIS-Complex) is being organised in Pune in June 2008 on behalf of NBHM.
Members of the Local Organising Committee
Bhaskaracharya Pratishthana: C. S. Inamdar (Custodian), R. R. Simha, Anandateertha Mangasuli
University of Pune: B .N. Waphare (HOD, Maths.), S. A. Katre, H. Bhate
Speakers
- A. R. Shastri: See the detailed syllabus
- Dinesh Thakur: See the detailed syllabus
- A. Mangasuli:
- Covering space theory (3 lectures)
- De Rham Cohomology and Hodge Theory (An overview) (1 lecture)
- Ravi Raghunathan: The convexity principle and applications to functional analysis and number theory.
- R. R. Simha: Riemann Surfaces
- S. A. Katre: Doubly periodic functions
- Kaushal Verma: (6 lectures)
- Statement of Picard type theorems on the plane.
- Definition of Fatou-Bieberbach domains, their properties and the theory of normal forms for local holomorphic automorphisms with fixed points.
- Fatou and Bieberbach's construction.
- Theorems of Rosay-Rudin for constructing Fatou-Bieberbach type domains.
- Examples and connections with complex dynamics in higher dimensions.
- Ravi Kulkarni:
- Geometry of Complex Numbers
- Branched Covering Space Theory
- The modular Group
- S. R. Ghorpade: Hardy-Ramanujan-Rademacher formula for partitions
- Ajit Iqbal Singh: Weierstrass' Product Theorem and Mittag-Leffler's Theorem from Complex-valued to the Banach Algebra set-up.
Please refer to the link: The Mittag-Leffler Theorem: The Origin, Evolution, and Reception ... - Sanjay Pant: Complex dynamics.
Detailed Syllabus (to be updated)
1 Contour Integration 1
1.1 Path Connectivity . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Definition and Basic Properties of Contour Integration . . . . . . . 6
1.3 Existence of Primitives . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Cauchy-Goursat Theorem . . . . . . . . . . . . . . . . . . . . . . 21
1.5 * Cauchy’s Theorem via Green’s Theorem . . . . . . . . . . . . . . . 27
1.6 Cauchy’s Integral Formulae . . . . . . . . . . . . . . . . . . . . . . . . 30
1.7 Analyticity of Complex Differentiable Functions . . . . . . . . . . . . . 33
1.8 A Global Implication: Liouville . . . . . . . . . . . . . . . . . . . . 37
1.9 Mean Value and Maximum Modulus . . . . . . . . . . . . . . . . . . 39
1.10 Miscellaneous Exercises. . . . . . . . . . . . . . . . . . . . . 41
2 General Form of Cauchy’s Theorem 45
2.1 Winding Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Homotopy and Simple Connectivity . . . . . . . . . . . . . . . . . 51
2.3 Homology Form of Cauchy’s Theorem . . . . . . . . . . . . . . . . 55
2.4 Miscellaneous Exercises . . . . . . . . . . . . . . . 60
3 Convergence in Function Theory 63
3.1 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 The Exponential and Trigonometric Functions . . . . . . . . . . . . . 76
3.3 Sequences of Holomorphic Functions . . . . . . . . . . . . . . . . . 85
3.4 Convergence Theory for Meromorphic Functions . . . . . . . . . . . . . 89
3.5 Partial Fraction Development of π cot πz. . . . . . . . . . . . . . . . . . 94
3.6 Infinite Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.7 Runge’s Approximation Theorem . . . . . . . . . . . . . . . . . . . . . . 104
4 Normal Families and Conformal Mappings 115
4.1 Metric on Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2 Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3 Equicontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.4 Families of Meromorphic Functions . . . . . . . . . . . . . . . . . . . . . 121
4.5 Uniformization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.6 Miscellaneous Exercises . . . . . . . . . . . . . . . . . . . . . . 128
5 Harmonic Functions 129
5.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2 Application to Potential Theory . . . . . . . . . . . . . . . . . . . . . . . 138
5.3 Mean Value Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.4 Harnack’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.5 Subharmonic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.6 Perron’s Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.7 Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.8 Multi-connected Domains . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.9 Miscellaneous Exercises . . . . . . . . . . . . . . . . . . . . . . 169
Click here to download time table
Selected Applicants |
Sr. No. |
Name |
Institute |
Place |
1. |
Dr. Anuradha Narasimhan |
Pune |
|
2. |
Mr. Jagmohan Tanti |
Bhaskaracharya Pratishthana |
Pune |
3. |
Dr. (Ms) Anubha Gupta |
NSIT |
Delhi |
4. |
Mr. Priyabrot Gochhayat |
Derhampur University |
Orissa |
5. |
Mr. Sunil Hans |
Jamia Millia Islamia |
New Delhi |
6. |
Mr. Naresh Singh |
Jamia Millia Islamia |
New Delhi |
7. |
Mr. Jayanta Borah |
NERIST, Nirjuli |
Arunachal Pradesh |
8. |
Dr. Vishnu Narayan Mishra |
S.V.N.I.T. |
Surat |
9. |
Mr. Pradeep Malik |
I.I.T., Roorkee |
Roorkee |
10. |
Mr. Dinesh Kumar Keshari |
I.I.Sc. |
Bangalore |
11. |
Mr. Umesh |
Rajdhani College |
Delhi |
12. |
Mr. Sourav Pal |
I.I.Sc. |
Bangalore |
13. |
Ms. Shreedevi K. Masuti |
I.I.T. Bombay, Powai |
Mumbai |
14. |
Mr. Jyoti Prakash Saha |
ISI, Bangalore |
Bangalore |
15. |
Mr. Devendra Shirolkar |
University of Pune |
Pune |
16. |
Mr. Shiv Prakash Patel |
I.I.T. Bombay, Powai |
Mumbai |
17. |
Ms. Rupali Khedkar |
I.I.T. Bombay, Powai |
Mumbai |
18. |
Mr. Sanjay Kumar |
I.I.T. Bombay, Powai |
Mumbai |
19. |
Mr. Bappaditya Bhowmik |
I.I.T., Madras |
Chennai |
20. |
Mr. Vikas Jadhav |
Nowrosjee Wadia College |
Pune |
21. |
Mr. Sahil Mhaskar |
I.S.I. |
Bangalore |
22. |
Ms. Arati d. Salunke |
A. I. College |
Pune |
23. |
Ms. Sonali V. Mandavkar |
A. I. College |
Pune |
24. |
Ms. Shraddha R. Natu |
A. I. College |
Pune |
25. |
Ms. Tejasvi R. Shinde |
A. I. College |
Pune |
26. |
Mr. Rohit D. Holkar |
I.S.I. |
Bangalore |
27. |
Mr. Saumitra Kulkarni |
B.I.M. |
Pune |
28. |
Mr. Ashwin Deopurkar |
C.M.I. |
Madras |
How to reach |